pH Control Enables Simultaneous Enhancement of Nitrogen Retention and N2O Reduction in Shewanella loihica Strain PV-4

نویسندگان

  • Hayeon Kim
  • Doyoung Park
  • Sukhwan Yoon
چکیده

pH has been recognized as one of the key environmental parameters with significant impacts on the nitrogen cycle in the environment. In this study, the effects of pH on NO3-/NO2- fate and N2O emission were examined with Shewanella loihica strain PV-4, an organism with complete denitrification and respiratory ammonification pathways. Strain PV-4 was incubated at varying pH with lactate as the electron donor and NO3-/NO2- and N2O as the electron acceptors. When incubated with NO3- and N2O at pH 6.0, transient accumulation of N2O was observed and no significant NH4+ production was observed. At pH 7.0 and 8.0, strain PV-4 served as a N2O sink, as N2O concentration decreased consistently without accumulation. Respiratory ammonification was upregulated in the experiments performed at these higher pH values. When NO2- was used in place of NO3-, neither growth nor NO2- reduction was observed at pH 6.0. NH4+ was the exclusive product from NO2- reduction at both pH 7.0 and 8.0 and neither production nor consumption of N2O was observed, suggesting that NO2- regulation superseded pH effects on the nitrogen-oxide dissimilation reactions. When NO3- was the electron acceptor, nirK transcription was significantly upregulated upon cultivation at pH 6.0, while nrfA transcription was significantly upregulated at pH 8.0. The highest level of nosZ transcription was observed at pH 6.0 and the lowest at pH 8.0. With NO2- as the electron acceptor, transcription profiles of nirK, nrfA, and nosZ were statistically indistinguishable between pH 7.0 and 8.0. The transcriptions of nirK and nosZ were severely downregulated regardless of pH. These observations suggested that the kinetic imbalance between N2O production and consumption, but neither decrease in expression nor activity of NosZ, was the major cause of N2O accumulation at pH 6.0. The findings also suggest that simultaneous enhancement of nitrogen retention and N2O emission reduction may be feasible through pH modulation, but only in environments where C:N or NO2-:NO3- ratio does not exhibit overarching control over the NO3-/NO2- reduction pathways.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nitrite Control over Dissimilatory Nitrate/Nitrite Reduction Pathways in Shewanella loihica Strain PV-4.

Shewanella loihica strain PV-4 harbors both a functional denitrification (NO3 (-)→N2) and a respiratory ammonification (NO3 (-)→NH4 (+)) pathway. Batch and chemostat experiments revealed that NO2 (-) affects pathway selection and the formation of reduced products. Strain PV-4 cells grown with NO2 (-) as the sole electron acceptor produced exclusively NH4 (+). With NO3 (-) as the electron accept...

متن کامل

Shewanella loihica sp. nov., isolated from iron-rich microbial mats in the Pacific Ocean.

A novel marine bacterial strain, PV-4(T), isolated from a microbial mat located at a hydrothermal vent of Loihi Seamount in the Pacific Ocean, has been characterized. This micro-organism is orangey in colour, Gram-negative, polarly flagellated, facultatively anaerobic and psychrotolerant (temperature range, 0-42 degrees C). No growth was observed with nitrate, nitrite, DMSO or thiosulfate as th...

متن کامل

Shewanella spp. Use acetate as an electron donor for denitrification but not ferric iron or fumarate reduction.

Lactate but not acetate oxidation was reported to support electron acceptor reduction by Shewanella spp. under anoxic conditions. We demonstrate that the denitrifiers Shewanella loihica strain PV-4 and Shewanella denitrificans OS217 utilize acetate as an electron donor for denitrification but not for fumarate or ferric iron reduction.

متن کامل

Facilitated extracellular electron transfer of Shewanella loihica PV-4 by antimony-doped tin oxide nanoparticles as active microelectrodes.

Dissimilatory metal reducing bacteria are capable of extracellular electron transfer (EET) to insoluble metal oxides as external electron acceptors for their anaerobic respiration, which is recognized as an important energy-conversion process in natural and engineered environments, such as in mineral cycling, bioremediation, and microbial fuel/electrolysis cells. However, the low EET efficiency...

متن کامل

Extracellular Electron Transfer Mechanism in Shewanella loihica PV- 4 Biofilms Formed at Indium Tin Oxide and Graphite Electrodes

Extracellular electron transfer mechanism in Shewanella loihica PV4 biofilms formed at indium tin oxide and graphite electrodes. Journal Article How to cite: Jain, Anand; O Connolly, Jack; Woolley, Richard; Krishnamurthy, Satheesh and Marsili, Enrico (2013). Extracellular electron transfer mechanism in Shewanella loihica PV4 biofilms formed at indium tin oxide and graphite electrodes. Internati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017